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The study of the process  of s team bubble formation (boiling) is  one 
Despite the of the most  important problems of modern thermophysics.  

large number of studies,  there  a r e  no sufficiently substantiated concepts 
of the mechanism of this process.  Available quantitative generalizations 
a r e  actually of an empir ical  nature and frequently do not take into 
account the role  of a number of basic factors  that  influence the process .  

The resu l t s  of recently conducted studies on the mechanism of 
s t eam bubble formation contradict certain generally accepted concepts 
of the specific features of this phenomenon. 

This paper presents  briefly the resul ts  of a theoretical  study which 
revealed the determining role  of a phase change on the surface of the 
s t eam bubble that originated on the heating wall in the hydrodynamics 
of the process  of s team bubble formation. 
the process ,  built on the bas i s  of the resu l t s  of this  study, which differs 
essentially f rom those known, makes it possible to  explain the basic  
experimental  facts that character ize  the process  of s team bubble forma-  
tion. 

The new physical model of 

Most  r e sea rche r s  of the process of s team bubble formation s t a r t  
on the assumption that the high intensity of heat t ransfer ,  which charac-  
t e r i zes  this process ,  is  determined by the mixing of the liquid, which 
i s  caused by the origin and breakaway of s t eam bubbles f rom the heating 
surface 1, 2,  3 , 4 ,  5 ,  6 

In o rde r  to clarify the experimentally discovered periodic sharp  
drops in the temperature  on the heating surface during s team bubble 
formation, a hypothesis was advanced7, which differs in principle f rom 
that examined. 
a micro layer ;  it a s sumes  that the heating surface i s  cooled by evapora- 
tion of the microlayer  of liquid, which separa tes  the bubble f rom the 
heating surface.  
fluctuation of the wall temperature” showed that immediately af ter  
the origin of a bubble in the zone of the center of s t eam formation the 
tempera ture  of the heating surface undergoes a sha rp  drop and again 
reaches  a maximum value only after the breakaway of the bubble. 
important experimental fact contradicts the a s  sumption made  in the 
studies1? 2 ,  3 ,  4 ,  5, 

the heating surface should have a minimum tempera ture  in connection 
with the replacement of the volume of the bubble by cooler m a s s e s  of 
liquid. A s  regards  the hypothesis of the evaporation of a microla  e r ,  
it satisfactorily explains the nature of the fluctuations recorded” . 
However, the indicated hypothesis contradicts the generally known 
experimental  fact that a t  moderate heat flows (it is precisely such 

This is  the so-called hypothesis of the evaporation of 

La te r ,  m o r e  detailed experiments on the study of the 

This 

that immediately af ter  the breakaway of the bubble 
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conditions that were  s t ~ d i e d ~ ’ ~ ) m o s t  of the heat is removed by the 
liquid from the heating surface and the sha re  of the heat  of evaporation 
directly on the heating surface in the total  amount of heat  being removed 
i s ins  i gni f i  cant. 

In analyzing the result ing situation, a number of r e s e a r c h e r s  come 
to the conclusion that in r ea l  conditions of s team bubble formation the 
removal of heat is accomplished by the joint action of both indicated 
mechanisms of the process  . But even with such an approach, the 
above indicated contradictions a r e  still not removed, and to this day 
there  i s  no substantiated physical model of the process .  

10, 11 ,12  

Let us examine the phenomena on the interface during the or igin 
and growth of a s t eam bubble on the heating surface (F igure  1). 

F igure  1 

After the surface becomes somewhat overheated with respec t  to  
the temperature  of saturation, a s t eam bubble originates in the center  
of the s team formation, which represents  a pocket on the heating s u r -  
face. 
evaporation process  takes  place over its ent i re  surface.  
of heat flow to the surface of the bubble a r e  nonsymmetric.  
of the interface close to the wall ,  the evaporation proceeds m o r e  inten- 
sively than on the opposite side of the bubble, and the specific flow of 
the evaporating liquid drops sharply with increasing distance f rom the 
base  of the bubble to its front section. In view of the fact  that  evapora- 
tion represents  a process  of the escape f rom the liquid of molecules 
which have the highest speeds,  a definite react ive force directed toward 
the liquid acts on the interface. 

The new bubble is surrounded with overheated liquid and the 
The conditions 

On sections 

This force ,  which causes  a local 
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i nc rease  in p re s su re  due to the curvature of the bubble surface,  leads 
to a cer ta in  local decrease  in the surface tension. 

In connection with the nonuniformity of the evaporation on the bubble 
sur face ,  the magnitude of the indicated local change in surface tension 
will va ry  with the displacement f rom the base ,  where it will have a 
maximum value, to the front section of the bubble. As  a resu l t  of th i s ,  
a gradient of surface tension will appear on the bubble sur face ,  and 
tangential forces  will appear which w i l l  lead to the origin of circulation 
flows in the liquid as well as in the vapor phases (F igure  1 ) .  

n 

Figure  2. Diagram of F l o w  Along Interface Surface 

It should be pointed out that the nonuniformity of evaporation through 
the bubble surface will lead a l so  to nonuniformity of the tempera ture  on 
the interface,  which will a l so  cause the origin of a surface tension 
gradient directed to the s a m e  side a s  in the first case.  
connection with the fact that  the thermal  res i s tance  of the phase t r ans i -  
tion during the evaporation of the liquid is very  smal l ,  the tempera ture  
on the interface will differ insignificantly f rom the saturation t empera -  
t u re  of the s t eam within the bubble. 

However, in 

Le t  us c a r r y  out an  approximate evaluation of the intensity of the 
circulation flows that originate in  the liquid phase. 

The local p re s su re  change caused by evaporation of the liquid can 
be represented as follows: 

3 



q 9 
r r 

A P  = - F = 1.27 -4r - P ( v "  - V I )  , 

where q = the local value of the specific heat flow 
r = the latent heat of evaporation 

= the average ar i thmetic  value of the normal  speed corn- 
ponents of the escaping molecules 

P = the absolute p re s su re  
V I '  = the specific volume of the s team 
V I  = the specific volume of the liquid. 

In case of a bubble with radius R ,  the indicated p res su re  increase  
will lead a corresponding decrease  of the surface tension 

z - 0.635 - Rq Jr - P ( v "  - V I )  . R A P  Ar = -- 
2 r 

The tangential tension, which originates on the bubble surface in 
connection with the nonuniformity of evaporation, will be equal to 

- dv dr - ~ ( v "  - V I )  dq - . de 
R = -0.635 - 

de r 7 - -  ( 3 )  

Since the flow determined by this tangential tension is accompanied 
by intensive evaporation on the interface,  the t r ansve r se  flow of the mass 
will - similar ly  to the case  of flow with suctioning of the boundary layer - 
sharply compress  the a r e a  o f  the speed gradients in the liquid phase. 
F o r  this reason ,  the flow essentially takes  place in a nar row layer  
directly a t  the interface,  and it can be described by the Prandt l  equation 
for a boundary layer:  

where U = the speed along the axis I 
V = the speed along the axis n 
t = the t ime 
p = the density of the liquid 
v = the coefficient of the kinematic viscosity of the liquid. 

The existence of a considerable t r ansve r se  flow makes it possible, 
a s  a f i rs t  approximation, to d is regard  a l so  the longitudinal iner t ia  
member  U. a u / a e  in comparison with the t r ansve r se  V. aU/an. 
by regarding the flow a s  steady and considering the absence of a 

Fur the r ,  
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p r e s s u r e  gradient, Equation (4) can,  for  our case ,  be rewrit ten in 
the following simplified form: 

where 

j = 4 =  - v p  > p = v p  . 
r 

Equation (5) is solved for the boundary conditions 

u = o  

when 

when 

n = o .  

The solution gives a profile of the speeds 

- jn /p  U = - e  
j 

By integrating the profile of the speeds f rom the interface to  
infinity, we obtain the relationship for the determination of the flow 
of liquid which ro l l s  by as a bubble along the zone of its surface with 
a width per  unit length: 

( 7 )  

In order  to determine T ,  we shall undertake to determine the 
distribution of the heat flow through the interface: 
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wheqe 1 is counted f rom the base of the bubble 

L 

0 

In determining T with the help of the expressions (9)  and ( 3 )  and 
introducing into (8),  we get the final relationship for the determination 
of w: 

The evaluation of the amount of liquid which ro l l s  by a single 
bubble of water  vapor under conditions of s t eam bubble formation at 
atmospheric p re s su re ,  which was conducted by means of approximate 
Equation ( l o ) ,  shows that during the residence t ime on the heating 
surface the bubble ro l l s  by a volume of liquid which exceeds its own 
volume by approximately th ree  o rde r s .  
for this evaluation were  taken f rom F r i t z  and Ende 
considering the obviousness of the circumstance that the mixing of the 
liquid in connection with the replacement  of a volume of the bubble by 
colder masses  during its breakaway f rom the heating surface is 
immeasurably less  intensive, gives grounds for  assuming that the above 
described mechanism of heat removal  in the near-wall  layer  plays a 
basic  role in the process  of s t e a m  bubble formation. 

(The quantitative data necessary  
13 . )  The resu l t ,  

Le t  u s  examine, in  the light of the r e su l t s ,  the cycle of origin,  
growth, and breakaway of a s t eam bubble. 

After the breakaway of a previous bubble f rom the heating surface,  
a period of smallest convection mixings of the liquid takes  place in the 
vicinity of the center of s t eam formation, i. e . ,  the period of worse  
conditions for heat removal. 
complete agreement  with the data of Kin-ichi e t  a18 and Rogers  and 
Mesler  ) and conditions for the origin of a new bubble develop. 
new bubble finds i tself  in the a r e a  of the grea tes t  t empera ture  gradient 
and the specific flow of the evaporating liquid on its periphery becomes 
sharply nonuniform. In connection with this ,  the bubble, simultaneously 
with growth, begins to intensively pump the liquid f r o m  the layers  that 
a r e  situated in immediate vicinity of the heating surface.  
m a s s e s  of liquid, which come in place, cause a sharp  cooling of the 
surface.  
t empera ture ,  recorded a t  the moment  of the origin of the bubble in the 

The surface becomes overheated (in 

9 The 

The colder 

This period corresponds to  a period of sha rp  drop in the wall 



The rolling of the liquid by the bubble f rom its side leads 
to  the appearance of hydrodynamic forces that squeeze the s t eam 
bubble to the heating surface.  
according to the la tes t  experimental data', the surface of d i rec t  contact 
of the bubble with the wa!! is much less  than assumed ear l ie r  
be concluded that the result ing hydrodynamic forces  will exceed the 
forces  of surface tension in the c ros s  section of the bubble breakaway 
and that the breakaway diameter  of the bubble will essentially be 
determined by the balance between the lifting and indicated hydr odynarnic 
forces .  

Considering the circumstance that,  

13 , it can 

This conclusion is confirmed by the resu l t s  of observations on the 
breakaway of s team bubbles, in accordance with which, during the 
residence period on the heating surface,  the horizontal axis  of the 

. The indicated breakaway bubble i s  longer than the ver t ical  
mechanism explains a l s o  the statist ical  range of the magnitudes of the 
breakaway diameters  of the bubbles, which is observed in the experi-  
ments .  After the bubble reaches  a cer ta in  diameter ,  which depends 
on the local heat  conditions, the lifting force exceeds the squeezing 
forces  and the bubble breaks  away f rom the heating surface.  In the 
vicinity of the center of s t eam formation, the surface again starts to 
overheat,  and conditions again develop for the origin of the next 
bubble, etc. 

7,  14, 1 5 ,  16 

On'the basis  of this presentation, it should be concluded that the 
physical model of the process ,  described in this work, makes it pos- 
sible to give an explanation to a l l  experimental facts that charac te r ize  
the process  of s team bubble formation. 
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